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30 Abstract 

31 We have little information on how and why soil microbial community assembly will respond to 

32 predicted increases in aridity by the end of this century. Here, we used correlation networks and 

33 structural equation modeling to assess the changes in the abundance of the ecological clusters including 

potential winner and loser microbial taxa associated with predicted increases in aridity. To do this, we 

conducted a field survey in an environmental gradient from eastern Australia, and obtained information 

on bacterial and fungal community composition for 120 soil samples, and multiple abiotic and biotic 

factors. Overall our structural equation model explained 83% of the variance in the two mesic modules. 

Increases in aridity led to marked shifts in the abundance of the two major microbial modules found in 

our network, which accounted for >99% of all phylotypes. In particular, the relative abundance of one 

of these modules, the Mesic-Module-#1, which was positively related to multiple soil properties and 

plant productivity, declined strongly with aridity. Conversely, the relative abundance of a second 

dominant module (Xeric-Module-#2) was positively correlated with increases in aridity. Our study 

provides evidence that network analysis is a useful tool to identify microbial taxa that are either 

winners or losers under increasing aridity and therefore potentially under changing climates. Our work 

further suggests that climate change, and associated land degradation, could potentially lead to 

extensive microbial phylotypes exchange and local extinctions, as demonstrated by the reductions of up 

to 97% in the relative abundance of microbial taxa within Mesic-Module-#1. 

Key words. Global Change Ecology; Ecological networks; Fungi; Bacteria; Soil functions; Climate 

change; Plant-soil interactions. 
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Introduction 

56 Climate change is leading to a drier and hotter world and resulting in major soil degradation processes 

57 (Huang et al. 2016). Drylands already occupy over 45% of Earth’s landmass, with their cover expected 

58 to further increase by up to 23% by the end of this century (Huang et al. 2016). In drylands, soil 

bacteria and fungi are the most diverse and abundant organisms, and play critical roles in maintaining 

the rates and stability of multiple ecosystem functions, including litter decomposition, primary 

production, soil fertility and gas exchange (Delgado-Baquerizo et al. 2017). However, the diversity and 

abundance of fungi and bacteria are also highly vulnerable to climate change (Maestre et al. 2015). 

Microbial communities exhibit complex connections involving a large number of inter- and intra-

dependent interactions, making it very difficult to predict how entire microbial communities are likely 

to respond to global environmental change (Rillig et al. 2015; Shi et al. 2016). Some taxa can 

potentially benefit from increases in aridity (winners), while other taxa will be hindered as aridity 

increases (losers; sensu Eldridge et al. 2018a). Identifying potential winner and loser taxa in response to 

increases in aridity could have potential future implications for the management of microbial 

communities under global change scenarios. Network analysis has recently been proposed as a 

promising approach to describe this complexity and to obtain deeper insights into the organization of 

microbial associations in terrestrial ecosystems (Shi et al. 2016). The structure of ecological networks, 

which integrates biodiversity, community composition, and ecosystem functioning (Tylianakis et al. 

2008), is also regarded as a key attribute of biotic communities. Thus, taking a whole-network approach 

has the potential to advance our knowledge of microbial community and ecosystem responses to global 

change drivers (e.g., climate change) at both local and global scales (Barberán et al. 2012; Rillig et al. 

2015; Neilson et al. 2017). 

Recent studies have demonstrated that soil microbial taxa strongly associate with each other, 

and lead to the formation of well-defined modules (nodes of fungi or bacteria, also called ecological 

clusters) of taxa, providing evidence for tightly synchronized responses among bacteria and fungi (Shi 

et al. 2016). Moreover, previous studies have provided evidence that specific taxa of fungi and bacteria 

can share certain environmental preferences (Barberán et al. 2012; Rillig et al. 2015). Thus, they share 

82 similar predictors, such as location (distance from the equator), climate (e.g. aridity and temperature) 

83 and soil properties (e.g. pH and nutrients; Ramirez et al. 2014, Tedersoo et al. 2014; Maestre et al. 

84 2015). This suggests that particular bacterial and fungal taxa may strongly co-occur in soils across 

3 
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environmental gradients. Unlike traditional analyses, more focus on the microbial diversity and 

86 community composition and, the identification of highly connected modular structures representing 

87 important ecological units (Shi et al. 2016; Delgado-Baquerizo et al. 2018a) provide a unique 

88 opportunity to integrate highly multi-dimensional data (i.e., such as those from microbial communities), 

allowing more robust statistical inferences on the major predictors of entire microbial communities 

(Duran-Pinedo and others, 2011; Shi et al. 2016). 

Microbial modules have recently been reported to represent highly dynamic ecological 

structures that respond to changing environmental conditions. For example, Nuccio et al. (2016) and 

Shi et al. (2016) showed that the modularity of microbial networks from plant rhizospheres responds to 

biological activity during a growing season. Much less is known, however, about how changes in 

climate, such as predicted increases in aridity (Huang et al. 2016), affect the network of associations 

among bacterial and fungal taxa within drylands (Neilson et al. 2017). Increasing aridity may alter the 

relative abundance of modules both directly (i.e. via reductions in water availability; Maestre et al. 

2015), and indirectly (via changes in soil properties and plant attributes; Delgado-Baquerizo et al. 

2016). For example, increases in soil pH associated with increasing aridity can influence the diversity 

and community composition of soil bacteria and fungi (Rousk et al. 2010; Maestre et al. 2015), and as 

such could affect soil microbial networks. 

Here we applied network analyses and statistical modeling to data from a regional survey 

(>1000 km) spanning a wide range of aridity conditions and three within-plot vegetation types (Fig. 1) 

to test the hypothesis that increases in aridity such as those forecasted under climate change will result 

in substantial shifts in the relative abundance of microbial modules, leading to a new network of 

microbial associations in soils in ecosystems from eastern Australia. More importantly, we aim to 

identify a list of winner and loser taxa in response to potential increases in aridity in eastern Australia 

(Huang et al. 2016). 

Material and Methods 

Study area 

We conducted this study at twenty locations from eastern Australia (Fig. 1A). Locations for this study 

113 were chosen to include a wide range of aridity levels including arid, semiarid and dry-subhumid 

114 ecosystems. The total annual precipitation and mean temperature in this region ranged from 280 mm to 
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1167 mm and from 12.8º C to 17.5ºC, respectively. The locations included in this study showed a wide 

116 variety of vegetation types (e.g., grasslands, shrublands, savannas, dry seasonal forests and open 

117 woodlands dominated by trees). Perennial plant cover in these plots ranged between 18 to 98%. 

118 Soil sampling 

Soils were sampled in in the Australian summer (March 2014). Within each site we selected a 30 m x 

30 m plotwhich represented the dominant vegetation within each location. Plant cover and richness 

were measured within each plot as explained in Maestre et al. (2015). We collected three composite soil 

samples (three 0-5 cm depth soil cores) from beneath the vegetation (N-fixing shrubs, grasses, and 

trees) and in open areas between plant patches at each site. The same plant taxa were present across the 

complete gradient of aridity: Eucalyptus spp., Acacia spp. and the C3 native grass Rhytidosperma spp. 

A total of 120 soil samples (20 sites x 6 within-plot composite samples) were collected in this study. 

Note that we used a stratified sampling design to maximize within-plot spatial variability, which is 

critical for building co-occurrence networks based on correlations. Our sampling design also allows the 

comparison of information collected across plots, which otherwise (i.e., random sampling design) 

might have differed in terms of spatial variability. Soil samples were sieved (2 mm mesh). Then, 

portion of soil was immediately frozen at -20 ºC for molecular analyses, while the rest of the soil was 

air-dried, and stored for one month, before physicochemical analyses. 

Soil properties. 

Soil total organic C content was determined using the method described in Maestre et al. (2015). Soil 

total N was measured with a CNH analyzer (Leco CHN628 Series, LECO Corporation, St Joseph, MI, 

USA). Soil pH was measured in all the soil samples (1: 2.5 soil/water suspension). Total P was 

measured after digestion with sulphuric acid using a SKALAR San++ Analyzer (Skalar, Breda, The 

Netherlands). Soil total P was positively and significantly correlated with microbial biomass P (ρ = 

0.18; P = 0.049), Olsen inorganic P (ρ = 0.45; P < 0.001) and plant leaf P content (ρ = 0.23; P = 0.027), 

and, therefore, is a good surrogate of P availability. Total P ranged from 17 to 600 mg P kg -1 
soil. Soil 

total organic C ranges from 0.7 to 12%. Soil pH ranged from 4.8 to 9.1. 

Surrogates of ecosystem functioning. 

We measured: (1) the activities of three soil enzymes using the method explained in Bell et al. (2013): 

143 α-glucosidase (starch degradation), N-acetyl-β-Glucosaminidase (chitin degradation) and phosphatase 

144 (organic phosphorus mineralization), (2) the availability of dissolved organic carbon and inorganic N 

5 

119 

121 

122 

123 

124 

126 

127 

128 

129 

131 

132 

133 

134 

136 

137 

138 

139 

141 

142 

This article is protected by copyright. All rights reserved. 



 

 

 

    

       

      

     

  

         

      

        

    

          

         

     

  

  

        

     

      

  

       

     

      

       

 
 

    

    
 

 

  

    

       

     

   

  

145

150

155

160

165

170

from K2SO4 extracts measured as described in Delgado-Baquerizo et al. (2016), and (3) aboveground 

146 net primary productivity (ANPP) for the whole of 2014 and for March 2014, the month in which soil 

147 sampling was conducted, using NDVI obtained from satellite data as described in Delgado-Baquerizo 

148 et al. (2018a). 

Environmental variables 

For each site we calculated the aridity level [1 − Aridity Index (AI), where AI is precipitation/potential 

evapotranspiration] using AI data from the database in Maestre et al. (2015). We used aridity rather 

than mean annual precipitation because aridity is a more appropriate variable which includes both mean 

annual precipitation and potential evapotranspiration. Furthermore, this variable provides an integrative 

measure of the long-term water availability at each site. Finally, we identified the soil type in each plot 

using available data from the ISRIC (global gridded soil information) Soil Grids (https://soilgrids.org/ 

#!/?layer=geonode:taxnwrb_250m), which provide global information on soil classification (USDA 

classification) at a 250m resolution. 

Molecular analyses 

Soil DNA was extracted from 0.25 g of soil samples (defrosted) using the Powersoil® DNA Isolation 

Kit (Mo Bio Laboratories, Carlsbad, CA, USA). We quantified the total abundance bacteria and fungi 

in all soil samples using 96-well plates on a CFX96 Touch™ Real-Time PCR Detection System (Foster 

city, California, USA; qPCR). We used the primer sets: Eub 338-Eub 518 and ITS 1-5.8S described in 

Maestre et al. (2015) for qPCR analyses. We then employed amplicon sequencing using the Illumina 

MiSeq platform to characterize the community composition of bacteria and fungi in our samples . We 

used the 341F/805R (bacteria) and FITS7/ITS4 (fungi) primer sets (Maestre et al. 2015) for these 

analyses. Bioinformatic processing was performed using a combination of QIIME (Caporaso et al. 

2010), USEARCH (Edgar 2010) and UCLUST (Edgar 2010). Operational Taxonomic Units (OTUs; 

phylotypes hereafter) were defined as clusters of 97% sequence similarity using UCLUST (Edgar 

2010). Taxonomy was assigned using against the Greengenes database version 13_850 for 16S rDNA 

OTUs (DeSantis et al. 2006). For fungal ITS sequences, taxonomy was assigned using the UNITE 

database V6.9.7 (E<10 -5) (Koljalg et al. 2013). We filtered the OTU abundance tables for both primer 

sets to remove singletons. We then rarefied to an even number of sequences per samples to ensure an 

173 equal sampling depth (11789 and 16222 for 16S rDNA and ITS respectively). 

174 Network analyses 
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We first built a single correlation network between the phylotypes within the abundance table using the 

176 following protocol aiming to identify modules of strongly co-occurring microbial taxa. Prior to these 

177 analyses, we filtered out the rarest phylotypes by removing those with less than five reads in at least 

178 one sample across all samples. This resulted in a network with 25084 phylotypes as nodes (10570 

bacterial and 14514 fungal phylotypes, respectively). We then calculated all pairwise Spearman 

correlation coefficients among these microbial taxa and kept all positive correlations. This non-

parametric method measures the strength and direction of association between two ranked variables. 

We focused exclusively on positive correlations because they provide useful information on the co-

occurrence of particular microbial taxa that may respond in a similar manner to particular 

environmental conditions such as increases in aridity (Barberan et al. 2012). This approach ultimately 

allowed us to address our research question on the role aridity in regulating the relative abundance of 

the main microbial modules composed by bacterial and fungal taxa strongly co-occurring with each 

other. This led to a network with 62,388,880 links, which corresponds to just 19.8% of all possible links 

(falling within the expected range from previous ecological networks; Stouffer and Bascompte 2011). 

In all instances, we weighted these links by their corresponding correlation coefficient. We then used 

the Markov Cluster Algorithm software (van Dongen 2000) to extract modules from the network. This 

algorithm is explicitly designed to efficiently handle large networks. Here, a single parameter controls 

the quality of the clustering output. Rather than using the default options, we adjusted the inflation 

parameter to maximize the modularity of the resulting partition, which is a quantitative measure of the 

quality of a given partitioning of nodes in a network (Newman 2004). We used an inflation parameter I 

= 2.8, which lead to a maximum modularity M=0.124951 based on the assignment of phylotypes to 

four separate modules. We then calculated the relative abundance of these modules by summing the 

relative abundances (%) of all phylotypes within each module. Finally, we computed the relative 

abundance of each module in each site as the average relative abundance in the site's samples weighted 

by the coverage of the corresponding microhabitats (vegetation and open areas). Using this approach, 

we focus on the relative abundance of modules, rather than on individual taxa. 

After obtaining this co-occurrence network and detecting the modules within this network, we 

proceeded to cross-validate our network using an independent approach. To do this we first calculated 

203 all pairwise SparCC correlations between bacterial and fungal nodes using the Fastspar algorithm 

204 (Friedman & Alm, 2017), with 100 bootstraps and 100 permutations to control false discovery rate. For 
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these analyses we used a more conservative approach than that described above and used a minimum 

206 correlation coefficient of 0.4 and P < 0.05. Finally, we used the algorithm introduced by Vincent et al. 

207 (2008) to extract modules from the network. The relative abundance of these modules was calculated as 

208 the average of the standardized relative abundances (z-score) of all phylotypes within each module. 

Statistical analyses 

We evaluated the effect of aridity on the relative abundance of different microbial clusters (or modules) 

using linear regressions. To account for the spatial influence of the data (latitude and longitude), we 

used spatial autoregressive analyses. We used structural equation modeling (SEM, Grace 2006) to 

evaluate the direct and indirect effects of aridity and other important predictors of soil microbial 

communities like the distance from the equator, soil type and properties (total C, P and pH), within-plot 

vegetation type (trees, shrubs, grasses), plant cover and richness and microbial attributes (fungal and 

bacterial abundance and ratio), on the relative abundance of detected microbial modules. Thus, we used 

SEM to further clarify the effects of aridity on the relative abundance of each microbial module 

aftertaking into account statistically various environmental factors simultaneously (see our a priori 

model in Fig. S1). Changes in soil properties, plant attributes and microbial abundance due to 

increasing aridity could potentially affect the role that the environment plays in microbial associations, 

and this will likely influence the assembly of microbial networks in terrestrial environments. 

Furthermore, increases in aridity have been shown to reduce soil microbial abundance (Maestre et al. 

2015), to decouple nutrient cycles (Delgado-Baquerizo et al. 2013), and to raise abiotic stress in 

drylands (Vicente-Serrano et al. 2012). Thus, soil properties, plant community attributes and microbial 

abundance need to be considered when evaluating the role of increasing aridity as a driver of microbial 

community assembly. 

Before conducting SEMs, soil total organic C and total phosphorus were log-transformed to 

improve linearity. Microbial abundance was introduced in the model as the average of the abundance of 

bacteria and fungi (after log10 -transformation and z-score standardization). We did so to allow the 

inclusion of the fungal:bacterial ratio in our model, which otherwise would be highly correlated with 

the abundance of total bacteria and fungi. Note that we included the this ratio in our model to provide 

further evidence that changes in the contribution from fungal and bacterial phylotypes to each module 

233 considered the abundance of these organisms. Soil organic C was highly related to soil total N 

234 (Spearman’s ρ = 0.820; p < 0.001), and its inclusion represented soil organic matter in our models 
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(Delgado-Baquerizo et al. 2013). Because of this, total N was not explicitly included in the model. In 

236 our SEM model, the different within-plot vegetation types (grasses, N-fixing shrubs and trees) were 

237 categorical variables with two levels: 1 (particular microhabitat; e.g., trees) and 0 (remaining 

238 microhabitats + open areas). Doing so allowed for comparison in the effect of a specific within-plot 

vegetation type (e.g. trees) on each microbial module with the average of the remaining vegetation 

types and open areas. Note that for our baseline condition (i.e. procedural control), we selected the 

composite samples from open areas, and, therefore, did not explicitly include it in our model (Grace 

2006). Using the same approach, we included in our model the most common soil types: Ustox 

(Oxisols of semiarid and subhumid climates) and Albolls (Mollisols of wet soils), which were found in 

95% of our studied sites. 

We then tested model goodness of fit using the Chi-square (χ
2
) test. A model has a good fit when 

0 ≤ χ
2 

≤ 2 and 0.05 < p ≤ 1.00) and the root mean square error of approximation (RMSEA; the model 

has a good fit when RMSEA 0 ≤ RMSEA ≤ 0.05 and 0.10 < p ≤ 1.00. We then used the Bollen-Stine 

bootstrap test (the model has a good fit when 0.10 < bootstrap p ≤ 1.00) to confirm model fit and our 

results indicated that our a priori model had a good fit to our data. 

Finally, we used Spearman correlations to identify particular microbial taxa within a given 

module that are highly characteristic of particular aridity conditions (i.e., increase or decrease with 

aridity). In particular, we correlated the relative abundance of all phylotypes within each major module 

and aridity. These analyses were conducted using the R statistical software (http://cran.r-project.org/). 

Spearman correlations were also used to explore the link between the relative abundance of a given 

module and surrogates of multiple ecosystem functions including soil enzyme activities, available 

nutrients and ANPP. 

Results 

We found that communities of fungi and bacteria grouped into four largely independent microbial 

modules across our environmental gradient, accounting for 41.7, 57.7, 0.50 and 0.09% of the microbial 

phylotypes, respectively (Fig. 1B). Each module represented a discrete, tightly correlated microbial 

cluster, including phylotypes of both fungi and bacteria whose relative abundance was more strongly 

263 associated with each other than with phylotypes from other clusters (Fig. 2). We retained in our 

264 network analyses the first three modules, which accounted for 99.9% of microbial phylotypes. Module 
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#4 was not ubiquitous (i.e., it was present at only one site), and was therefore removed from further 

266 statistical modeling. The relative abundances of Modules #1 and 2 were highly negatively correlated (ρ 

267 = -0.999; P < 0.001). Modules 1 (ρ = 0.276; p = 0.002) and 2 (ρ = 0.283; p = 0.002) were also related to 

268 Module #3. Modules #1 and #3 were dominated by fungal taxa, while Module #2 had a higher relative 

contribution from bacteria (Figs. 2 and S1). Module #1 comprised 28% phylotypes of bacteria and 58% 

phylotypes of fungi, and Module #2 comprised 61% phylotypes of bacteria and 31% phylotypes of 

fungi (Fig. 2A). 

Aridity was strongly negatively and positively related to the relative abundance of Module #1 

(hereafter Mesic Module #1; defined as microbial taxa preferring more mesic environments) and #2 

(hereafter Xeric Module #2; defined as microbial taxa preferring more arid environments), respectively, 

accounting for 99.4% of all taxa in all locations across our environmental gradient (i.e. standardized by 

microsite coverage; Figs. 2A and 2B). Module #3 was not significantly related to aridity (Figs. S2 and 

S3). Similar results were found at the sample level (Fig. S3).These results were maintained when we 

controlled for the spatial influence of the data (Figs. 2B). The relative abundances of Mesic Module #1 

and Xeric Module #2 were strongly positively related to the relative abundances of the same modules 

but calculated as the standardized sum of the relative abundance of each OTU within each module 

(Spearman ρ >0.94; p < 0.001). Moreover, similar results were found for the cross-validation network. 

The SparCC Module #1 was significantly and positively related to Mesic Module #1 (Pearson´s r = 

0.47; p < 0.001), and SparCC Module #2 was significantly and positively related to Xeric Module #1 

(Pearson´s r = 0.50; p < 0.001). The SparCC analyses yielded an additional dominant module (SparCC 

Module #3), which was also significantly and positively correlated to Mesic Module #1 (Pearson´s r = 

0.34; p < 0.001). More importantly, SparCC Module #1 was negatively related to aridity (Pearson´s r = 

0.27; p = 0.003), while SparCC Module #2 was positively related to aridity (Pearson´s r = 0.50; p = 

0.004). 

Overall, our structural equation model explained 83% of the variation in both Mesic Module #1 

and Xeric Module #2. Aridity had a direct negative effect on the relative abundance of Mesic Module 

#1, while having a positive effect on the relative abundance of Xeric Module #2 (Figs. 3A). Moreover, 

although the impacts of aridity on the relative abundance of the main modules were largely direct, we 

293 also found that increases in aridity affected the assembly of the microbial correlation network indirectly 

294 by shifting soil types from Albolls to Ustox, declining total plant cover and by increasing soil total P 
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and pH (Fig. 3A). We also found some direct and indirect effects of vegetation type on the relative 

296 abundance of microbial modules (Fig. 3A). For example, the presence of trees had indirect negative and 

297 positive effects on Mesic Module #1 and Xeric Module #2, respectively, via soil pH and P. The relative 

298 abundance of Mesic Module #1 was positively correlated with multiple surrogates of ecosystem 

functioning, including nutrient availability, enzyme activities and plant primary productivity (Table S1). 

In general, we found that 2806 and 4676 microbial phylotypes within Mesic Module #1 and 

Xeric Module #2 were negatively and positively correlated with aridity, respectively (P<0.05; Table 

S2). In particular, we found multiple microbial taxa from genus Rubrobacter, Geodermatophilus and 

Streptomyces or class Thermomicrobia and phylotypes Preussia minima, Alternaria triticimaculans, 

Pleosporales sp., Fusarium tricinctum and Phoma macrostoma, Tulostoma melanocyclum, Geastrum 

pectinatum, Laccaria sp. and Mortierella wolfii to be strongly positively related to aridity (potential 

winners; Fig. 4; Table S2). On the contrary, we found that microbial phylotypes including 

Cladophialophora sp., Trichoderma spirale, Oidiodendron sp., Helotiales sp., Pochonia bulbillosa, 

Umbelopsis gibberispora and isabellina, Burkholderia tuberum, Sphingomonas wittichii, 

Mycobacterium celatum and Actinomadura vinacea were strongly negatively correlated with aridity 

(potential losers; Fig. 4; Table S2). The complete list of taxa predicting aridity changes within each 

module is available in Table S2. 

Discussion 

Increases in aridity lead to dramatic changes in the assembly of soil microbial communities 

Our findings support the hypothesis that increases in aridity lead to significant changes in the relative 

abundance of modules of tightly co-occurring fungal and bacterial phylotypes. In particular, our results 

indicate that certain microbial modules will be susceptible to increases in aridity, particularly in the 

transition between semi-arid and arid areas (where Mesic Module #1 shifted to Xeric Module #2). 

Previous studies have shown that increases in aridity negatively affect microbial diversity and 

abundance (Maestre et al. 2015). Here, we provide solid evidence that increases in aridity, just as those 

predicted under climate change, can promote marked changes in the assembly of complex microbial 

networks at the regional scale, leading to substantial turnover of entire microbial communities. These 

323 changes may result in local extinctions in terrestrial ecosystems. Moreover, we were able to identify 

324 particular taxa of fungi and bacteria at the OTU level (phylotype level) that are strongly negatively 
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345

350

(losers) or positively (winners) related to increases in aridity in eastern Australia. These results provide 

326 a regional list of particular microbial phylotypes that could be highly vulnerable to predicted increases 

327 in aridity in this century. These results have implications for our understanding of processes related to 

328 land degradation and desertification, such as overgrazing and land clearance, which are likely to 

become more pronounced as we move to a drier and more unpredictable climate. 

An important result from our study was that increases in aridity shifted the network of 

associations from a dominance by fungal phylotypes (in terms of OTU relative abundance and number 

of phylotypes) associated with bacteria (Mesic Module #1) to bacterial phylotypes co-occurring with 

fungi (Xeric Module #2). In support of these results, our SEM showed that the fungal:bacterial ratio 

declined with increasing aridity. Soil bacteria and fungi include mutualistic, neutral, pathogenic and 

parasitic relationships, and their complex associations are linked to essential ecosystem processes such 

as litter decomposition (Kobayashi and Crouch 2009). Changes in the relative contribution of 

phylotypes of bacteria and fungi to the network of microbial associations might then alter soil 

functioning in terrestrial ecosystems. Bacteria and fungi are known to be involved in different processes 

that are fundamental for sustaining a functional ecosystem (van der Heijden et al. 2008). For example, 

bacterial-dominated microbial communities often lead to fast cycling of nutrient (e.g. nitrification) and 

to open nutrient cycling (i.e., lower capacity to retain nutrients in the system; van der Heijden et al. 

2008). Moreover, slow-growing organisms such as soil fungi have been reported to promote the 

resistance of nutrient cycling to climate change compared with fast-growing organisms such as bacteria 

(van der Heijden et al. 2008). Thus, by promoting changes in the contribution of bacteria over fungi 

phylotypes to the network of associations, increases in aridity might indirectly impact the provision and 

resistance of essential ecosystem functions and services such as litter decomposition and nutrient 

cycling (Kobayashi and Crouch 2009). 

Direct and indirect effects of aridity on the relative abundance of microbial modules.  

We found that aridity regulated the relative abundance of main microbial modules both directly, i.e. via 

reductions in water availability, and indirectly, via changes in soil type, soil properties such as soil P 

and pH, and total plant cover, which are known to be impacted by aridity (Delgado-Baquerizo et al. 

2013; Maestre et al. 2015). Part of these effects might be associated with the fact that soils in Australian 

353 drylands are old, acidic and nutrient-depleted, compared with other drylands (Eldridge et al. 2018b). 

354 For example, increases in soil pH associated with increasing aridity may explain the observed changes 
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in the assembly of these networks. Soil pH has been widely reported to be an important driver of 

356 microbial communities in terrestrial ecosystems. However, this is not always the case for drylands 

357 where pH is typically high, and microbial communities are less sensitive to changes in pH (Maestre et 

358 al. 2015; Neilson et al. 2017). Similarly, increases in soil P with aridity may play a major role in 

driving the soil microbial networks studied, as Australian environments are known to be strongly P-

limited, with reported consequences for the biodiversity and functioning of biotic communities 

(Lambers et al. 2013). Reductions in plant cover associated with increases in aridity might also alter the 

complete microbial network of associations via reductions in resource inputs (e.g. litter and 

rhizodeposition) and exacerbating specific harsh environmental conditions (e.g. amount of radiation). 

Our findings indicate that soil variables such as pH and total P –linked to changes in soil type with 

increases in aridity–, and plant cover, which are important predictors of microbial community 

composition and diversity (Tedersoo et al. 2014; Maestre et al. 2015), are also key drivers of the 

complex network of bacterial and fungal phylotypes associations in soils. Some of these findings have 

strong implications for forecasting climate change impacts on microbial networks. For example, trees 

had indirect negative and positive effects, respectively, on Mesic Module #1 and Xeric Module #2 via 

soil pH and soil P. Interestingly, plant cover and richness had multiple direct effects on the relative 

abundance of Mesic Module #1 and Xeric Module #2. These results highlight the importance of 

microsite differentiation in controlling the assembly of complex microbial networks via changes in 

local soil properties. Moreover, this result further suggests that changes in vegetation functional 

composition in response to increasing aridity will have indirect consequences for the relative abundance 

of key microbial modules in terrestrial environments. For example, increases in aridity are linked to 

reduced cover of trees (Table S3). Further, the cover of trees was positively/negatively linked to the 

relative abundance of Mesic Module #1 and Xeric Module #2, respectively (Table S3). Thus, changes 

in the relative abundance of this within-plot vegetation type could impact the assembly of microbial 

networks in terrestrial ecosystems, with potential collateral effects for ecosystem functioning. These 

results are in accordance with a recent study evaluating changes in microbial diversity along a regional 

aridity gradient in Chile (Neilson et al. 2017). 

Our SEM model supports the hypothesis that increasing aridity will lead to the turnover of 

383 entire microbial communities in terrestrial ecosystems by shifting the relative abundance of well-

384 defined microbial modules (from Mesic Module #1 to Xeric Module #2). Given the observed links 
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between network structure and ecosystem functioning, we expect these shifts to have strong 

386 implications for ecosystem functioning under a changing climate. For example, we found that the 

387 relative abundance of Mesic Module #1 was positively related to variables such as the activity of 

388 phosphatase, the amount of available soil C and inorganic N and ANPP, which are all linked to 

ecosystem functions and services such as nutrient cycling, organic matter decomposition and 

mineralization and food production (Table S1). Thus, our results propose the idea that changes in the 

complex network of microbial associations derived from increased aridity might negatively impact 

ecosystem processes linked to the provision of key ecosystem services. Moreover, these findings 

further support the results of a previous metagenomics study reporting large differences in potential soil 

functioning between arid and humid environments (Fierer et al. 2012). Future endeavors exploring 

modules of microbial communities co-occurring in terrestrial ecosystems should further evaluate the 

functional attributes of microbial modules so that we can gain further functional insights on the role of 

microbial networks in regulating ecosystem functioning.  

Winners and losers microbial taxa in response to increasing aridity. 

We identified microbial taxa that are potentially vulnerable (losers) or might benefit (winners) from 

predicted increases in aridity throughout this century (Huang et al. 2016; Neilson et al. 2017). Microbial 

losers are expected to be phylotypes unable to tolerate the increasingly harsh conditions associated with 

aridity, including water scarcity or extreme radiation derived from reductions in plant coverage. Here, 

we found that increases in aridity may reduce the relative abundance of some microbial phylotypes 

within Mesic Module #1, which are linked to the performance of plants via symbiosis such as 

Burkholderia tuberum (capable of symbiotic nitrogen fixation with some legumes; Esqueda et al. 2012) 

and Oidiodendron sp. (ericoid mycorrhiza; Smith and Read 2008). In addition, we found that important 

taxa such as Helotiales sp. (saprobes) and Sphingomonas wittichii (involved in toxin degradation) 

might be negatively influenced by increases in aridity, with consequences for overall ecosystem 

functioning. Interestingly, the parasitic nematode Pochonia bulbillosa was also found to decline with 

increases in aridity, suggesting that, as found with soil animals and vascular plants (Vicente-Serrano et 

al. 2012), associated microbial phylotypes will also be negatively impacted by increases in aridity. 

We also found multiple phylotypes whose relative abundance increased with aridity. Winners, 

413 i.e. phylotypes which can potentially benefit from increases in aridity along this century, are expected 

414 to be thermophilic and highly resistant to desiccation and radiation. Interestingly, taxa from Xeric 

14 

389 

391 

392 

393 

394 

396 

397 

398 

399 

401 

402 

403 

404 

406 

407 

408 

409 

411 

412 

This article is protected by copyright. All rights reserved. 



 

 

 

    

    

      

    

    

      

      

  

    

     

   

      

      

    

  

  

  

    

        

    

       

     

      

      

      

    

     

       

  

  

415

420

425

430

435

440

Module #2 included a wide variety of taxa typical from desert ecosystems, which are noted radiation 

416 and desiccation tolerant desert bacteria including phylotypes from the genus Rubrobacter, 

417 Geodermatophilus, Streptomyces or from the class Thermomicrobia (Mohammadipanah and Wink 

418 2016). All these taxa were strongly positively correlated with aridity. We also found fungal phylotypes 

typical from drylands, such as Tulostoma melanocyclum, Preussia minima and Geastrum pectinatum, to 

be strongly positively related to aridity (Esqueda et al. 2004). We also found that increasing aridity had 

a strong positive correlation with the relative abundance of multiple fungal pathogens of plants, 

including Alternaria triticimaculans, Pleosporales sp, Pleosporaceae sp, Fusarium tricinctum and 

Phoma macrostoma. We also found that the relative abundance of Mortierella wolfii, a well-known 

pathogen of humans and other animals that can cause bovine abortion and pneumonia (Davies and 

Wobeser 2010), increased with aridity. Other fungal taxa such as Capronia peltigerae –a parasite of 

living lichens– also increased in the most arid places, where biocrust-forming lichens are often 

abundant (Liu et al. 2017). Building on from previous efforts aiming to identify the role of aridity in 

regulating microbial communities in drylands (Maestre et al. 2015; Neilson et al. 2017), our study 

improves our understanding and provides evidence for potential winner and loser taxa in response to 

increases in aridity in Australia. 

Conclusions 

All things considered, our findings present strong evidence that increases in aridity will lead to critical 

shifts in the assembly of complex microbial networks of fungi and bacteria, potentially leading to 

massive phylotype exchange and local extinctions in terrestrial ecosystems, as demonstrated by the 

reductions of up to 97% in the relative abundance of microbial taxa within Mesic Module #1. Our 

results thus fill major gaps in our understanding of how complex networks of microbial associations 

respond to increases in aridity, which will promote land degradation in drylands worldwide, and 

provide solid evidence of the vulnerability of microbial networks to climate change. Considering the 

primacy of microbial communities in ecosystem functioning, the reported changes in the assembly of 

microbial co-occurrence networks are likely to have far-reaching consequences for the provision of 

important ecosystem functions and services like litter break-down, nutrient cycling and plant 

productivity, and hence need to be considered when assessing the consequences of climate change and 

443 associated land degradation on the functioning of terrestrial ecosystems.   
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Figure caption 

Figure 1. Location of the study sites studied (a), and correlation network including multiple nodes 

(taxa) from bacteria and fungi (b). Color patterns in panel (a) indicate aridity (1 – aridity index) 

gradients. Different colors in panel (b) correspond with different modules. 

Figure 2. Community composition and association with increases in aridity for Mesic Module #1 and 

Xeric Module #2. Panel (A) shows the overall bacterial and fungal community composition for Mesic 

Module #1 and Xeric Module #2. Panel (B) shows the relationships between aridity and the relative 

abundance of microbial modules at the site level. Results of regressions are as follows: Mod#1. 

Ordinary least squares (OLS) (continuous line), R
2 

= 0.566, P < 0.001, AICc = 6.184; Spatial 

autoregressive analyses (SAR), R
2 

= 0.451, P = 0.001, AICc = 10.847; Mod#2. OLS (continuous line), 

R
2 

= 0.565, P < 0.001, AICc = 6.251; SAR, R
2 

= 0.453, P = 0.001, AICc = 10.819. Separate regressions 

at the sample level are shown in Fig. S3. 

Figure 3. Structural equation model fitted to the relative abundance of microbial Modules #1 and #2 (a) 

and standardized total effects (direct plus indirect effects) derived from them (b). Numbers adjacent to 

arrows are path coefficients (P values), and are indicative of the effect size of the relationship. R
2 

= the 

proportion of variance explained. P = Soil total P; C = Soil total organic C; F:B ratio = fungal: bacterial 

ratio. Vegetation = within-plot vegetation type (trees, shrubs and grasses). Mods #1 and #2 = Mesic 

Module #1 and Xeric Module #2, respectively. P-values as follow: *P < 0.05; **P < 0.01. 

Figure 4. Relationships between aridity and the relative abundance of selected phylotypes within Mesic 

Module #1 and Xeric Module #2. A more completed list of examples for phylotypes within Mesic 

Module #1 and Xeric Module #2 and their correlation (Spearman) to aridity is available in Table S2. 
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